Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Monit ; 30: e943940, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38288559

ABSTRACT

This publication has been retracted by the Editor due to the identification of non-original figure images and manuscript content that raise concerns regarding the credibility and originality of the study. Reference: Jin-Cheng Zheng, Ke-Jie Chang, Yu-Xiang Jin, Xue-Wei Zhao, Bing Li, Meng-Hang Yang. Arsenic Trioxide Inhibits the Metastasis of Small Cell Lung Cancer by Blocking Calcineurin-Nuclear Factor of Activated T Cells (NFAT) Signaling. Med Sci Monit 2019; 25:2228-2237. DOI: 10.12659/MSM.913091.

2.
Mol Biol Rep ; 49(3): 2245-2253, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35028858

ABSTRACT

BACKGROUND: Small cell lung cancer (SCLC) is the most malignant type of lung cancer. We previously reported that arsenic trioxide (As2O3) inhibited tumor initiating cells (TICs) of SCLC in vitro. In the present study, we aimed to identify the above effect in vivo and shed light on its underlying mechanism. METHODS AND RESULTS: TICs were enriched by culturing human SCLC cell line as sphere cells in specified serum-free medium. The expression of stem cell markers, CD133 and CD44, and the in vivo tumorigenicity of both TICs and their parental cells were examined. To demonstrate the inhibitory effect of As2O3 on TICs, cell proliferation, clone formation and sphere formation assays were performed. CD133 and Notch pathway-related factors were also measured after As2O3 treatment. Xenograft models were established by injecting TICs into nude mice. Mice were treated with As2O3 for 14 days. Afterwards, the tumor volume and the expression of CD133 and Notch1 were evaluated. TICs obtained by the above-mentioned method showed elevated levels of stem cell markers and increased tumorigenicity compared with their parental cells. As2O3 treatment largely inhibited TICs proliferation, sphere formation and clonogenic capacity. As2O3 also reduced the expression of CD133 and down-regulated Notch pathway in TICs. Furthermore, As2O3 potently inhibited tumor growth, decreased the expression of CD133 and down-regulated Notch1 in tumors originating from TICs. CONCLUSIONS: Our data demonstrate that As2O3 has a remarkable inhibitory effect on TICs of SCLC both in vitro and in vivo, and the mechanism might involve the down-regulation of Notch pathway.


Subject(s)
Antineoplastic Agents , Arsenicals , Lung Neoplasms , Small Cell Lung Carcinoma , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Arsenic Trioxide/pharmacology , Arsenic Trioxide/therapeutic use , Arsenicals/pharmacology , Arsenicals/therapeutic use , Cell Line, Tumor , Humans , Lung Neoplasms/metabolism , Mice , Mice, Nude , Neoplastic Stem Cells/metabolism , Small Cell Lung Carcinoma/drug therapy
3.
Transl Lung Cancer Res ; 9(4): 1379-1396, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32953511

ABSTRACT

BACKGROUND: Small cell lung cancer (SCLC) is the most deadly and aggressive type of primary lung cancer, with the 5-year survival rate lower than 5%. The FDA has approved arsenic trioxide (As2O3) for acute promyelocytic leukemia (APL) treatment. However, its role in SCLC-derived cancer stem cells (CSCs) remains largely unknown. METHODS: CSCs were enriched from SCLC cell lines by culturing them as spheres in conditioned serum-free medium. Then, qPCR, western blot, serial passage, limiting dilution, Transwell, and tumorigenesis assay were performed to verify the cells' stem phenotypic characteristics. Anticancer efficiency of As2O3 was assessed in these cells using CCK8, colony formation, sphere formation, flow cytometry, qPCR, western blot analysis in vitro, and tumor growth curve, immunofluorescence, and TUNEL staining analyses in vivo. RESULTS: The fifth-passage SCLC spheres showed a potent self-renewal capacity, higher clonal formation efficiency (CFE), SOX2, c-Myc, NANOG, and OCT4 levels, and invasion ability, and stronger tumorigenesis capacity than the parental SCLC cells, indicating that the SCLC sphere cells displayed CSC features. As2O3 inhibited the proliferation, clonality and sphere forming ability of SCLC-derived CSCs and suppressed the tumor growth of CSCs-derived xenograft tumors. As2O3 induced apoptosis and downregulation of SOX2 and c-Myc in vitro and in xenografts. Besides, SOX2 knockdown suppressed SCLC-derived CSCs to self-renew and induced apoptosis. Mechanistically, expression of GLI1 (a key transcription factor of Hedgehog pathway) and its downstream genes increased in SCLC-derived CSCs, compared to the parental cells. As2O3 dramatically downregulated GLI1 and its downstream genes in vitro and in vivo. The GLI inhibitor (GANT-61) recapitulated and enhanced the effects of As2O3 on SCLC-derived CSCs, including growth suppression, apoptosis induction, and GLI1, SOX2 and c-Myc downregulation. CONCLUSIONS: Altogether, As2O3 effectively suppressed SCLC-derived CSCs growth by downregulating stem cell-maintenance factors and inducing apoptosis. These effects are mediated at least partly via the Hedgehog signaling blockade.

4.
Exp Ther Med ; 19(6): 3851-3855, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32346450

ABSTRACT

Gorham-Stout syndrome (GSS) is a rare disease characterized by spontaneous and progressive osteolysis caused by benign proliferation of lymphatic vessels or capillaries. It most commonly occurs in children or young individuals without any inherited predisposition. GSS most commonly affects the shoulder girdle, pelvis, ribs and skull. Its diagnosis is mainly based on radiological and pathological findings. The present study reports on the case of a 22-year-old male patient diagnosed with GSS involving the C1-T1 vertebrae accompanied by bilateral pleural effusion. Resection of the occipital and cervical vertebral lesions and spinal reconstruction using an internal fixator were successfully performed via the posterior approach. After the surgery, the patient received bisphosphonate treatment and vitamin D supplementation. The pleural effusion gradually decreased. At the 18-month follow-up visit, no evidence of new bone obstruction was present and the patient had no neurological sequelae.

5.
Biomed Res Int ; 2019: 4647252, 2019.
Article in English | MEDLINE | ID: mdl-31093499

ABSTRACT

Small-cell lung cancer (SCLC) is a highly malignant type of lung cancer with no effective second-line chemotherapy drugs. Arsenic trioxide (As2O3) was reported to exert antiangiogenesis activities against lung cancer and induce poor development of vessel structures, similar to the effect observed following the blockade of Notch signaling. However, there are no direct evidences on the inhibitory effects of As2O3 on tumor growth and angiogenesis via blockade of Notch signaling in SCLC. Here, we found that As2O3 significantly inhibited the tumor growth and angiogenesis in SCLC and reduced the microvessel density. As2O3 disturbed the morphological development of tumor vessels and downregulated the protein levels of delta-like canonical Notch ligand 4 (Dll4), Notch1, and Hes1 in vivo. DAPT, a Notch signaling inhibitor, exerted similar effects in SCLC. We found that both As2O3 treatment and Notch1 expression knockdown resulted in the interruption of tube formation by human umbilical vein endothelial cells (HUVECs) on Matrigel. As2O3 had no effects on Dll4 level in HUVECs but significantly inhibited the expression of Notch1 and its downstream gene Hes1 regardless of Dll4 overexpression or Notch1 knockdown. These findings suggest that the antitumor activity of As2O3 in SCLC was mediated via its antiangiogenic effect through the blockade of Notch signaling, probably owing to Notch1 targeting.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Arsenic Trioxide/pharmacology , Lung Neoplasms/pathology , Receptors, Notch/metabolism , Signal Transduction/drug effects , Small Cell Lung Carcinoma/pathology , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Collagen/pharmacology , Down-Regulation/drug effects , Drug Combinations , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Laminin/pharmacology , Lentivirus/metabolism , Lung Neoplasms/blood supply , Male , Mice, Nude , Proteoglycans/pharmacology , Small Cell Lung Carcinoma/blood supply , Transcription Factor HES-1/metabolism , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
6.
Med Sci Monit ; 25: 2228-2237, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30913205

ABSTRACT

BACKGROUND The inhibitory effect of arsenic trioxide (As2O3) on lung cancer has been reported in some preclinical studies. However, its effect on small cell lung cancer (SCLC) has been poorly explored. Calcineurin and its substrate, nuclear factor of activated T cells (NFAT), mediate the downstream signaling of VEGF, and is critical in the process endothelium activation and tumor metastasis. In this study, we aimed to evaluate whether As2O3 had inhibitory effects on endothelial cells activation and the metastasis of SCLC, and to explore the possible mechanisms. MATERIAL AND METHODS In vitro, human umbilical vein endothelial cells (HUVECs) were used. Cell Counting Kit-8 assay and cell migration assay were performed to determine the effect of As2O3 on HUVECs proliferation and migration. The level of calcineurin, NFAT, downstream factors for Down syndrome candidate region 1 (DSCR1), and the endogenous inhibitor of calcineurin, were evaluated by quantitative PCR and western blotting. In vivo, SCLC metastasis models were established by injecting NCI-H446 cells into tail veins of nude mice. Tumor-bearing mice were treated with As2O3 or calcineurin inhibitor for 10 days, after which tumor metastasis in target organs was evaluated. RESULTS As2O3 significantly inhibited the proliferation and migration of endothelial cells. Also, As2O3 inhibited the expression levels of calcineurin, NFAT, and the downstream target genes CXCR7 and RND1, while it upregulated the level of DSCR1. Both As2O3 and calcineurin inhibitor exhibited notable inhibitory effect on the metastasis of SCLC, without obvious side effects. CONCLUSIONS These findings suggested that As2O3 had remarkable inhibitory effects on the endothelial cell activation and SCLC metastasis, and the mechanism might be related to the blocking of calcineurin-NFAT signaling by upregulating DSCR1.


Subject(s)
Arsenic Trioxide/pharmacology , NFATC Transcription Factors/drug effects , Small Cell Lung Carcinoma/drug therapy , Animals , Arsenic Trioxide/metabolism , Calcineurin/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , China , DNA-Binding Proteins , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Intracellular Signaling Peptides and Proteins/drug effects , Male , Mice , Mice, Nude , Muscle Proteins/drug effects , NFATC Transcription Factors/metabolism , Neoplasm Metastasis/drug therapy , Neovascularization, Pathologic/metabolism , Receptors, CXCR/drug effects , Signal Transduction , Up-Regulation/drug effects , Vascular Endothelial Growth Factor A/drug effects , rho GTP-Binding Proteins/drug effects
7.
Oncol Lett ; 14(3): 3103-3109, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28928847

ABSTRACT

Arsenic trioxide (As2O3) exhibits a remarkable effect on leukemia treatment; however, its effect on solid tumors remains poorly explored. The present study demonstrated the inhibitory effect of As2O3 on lung cancer and explored its possible mechanism. It was observed that As2O3 significantly inhibited the growth of lung cancer xenografts and tumor angiogenesis in vivo. The inhibitory effect of As2O3 on cell proliferation in vitro was more remarkable in vascular endothelial cells than in lung cancer cells. It was also observed that As2O3 inhibited the migration of vascular endothelial cells and disrupted vascular tube formation on Matrigel assays. In addition, a series of key signaling factors involved in multiple stages of angiogenesis, including matrix metalloproteinase (MMP)-2, MMP-9, platelet-derived growth factor (PDGF)-BB/PDGF receptor-ß, vascular endothelial growth factor (VEGF)-A/VEGF receptor-2, basic fibroblast growth factor (FGF)/FGF receptor-1 and delta like canonical Notch ligand 4/Notch-1, were regulated by As2O3. These findings suggested that anti-angiogenesis may be an underlying mechanism of As2O3 anticancer activity in lung cancer.

8.
Am J Transl Res ; 8(2): 1133-43, 2016.
Article in English | MEDLINE | ID: mdl-27158399

ABSTRACT

Cancer stem cells (CSCs) are responsible for the tumorigenesis and recurrence, so targeting CSCs is a potential effective method to cure cancers. Activated Hedgehog signaling pathway has been proved to be implicated in the maintenance of self-renewal of CSCs, and arsenic trioxide (As2O3) has been reported to inhibit Gli1, a key transcription factor of Hedgehog pathway. In this study, we evaluated whether As2O3 has inhibitory effects on cancer stem-like cells (CSLCs) in lung cancer and further explored the possible mechanism. CCK8 assay and colony formation assay were performed to demonstrate the ability of As2O3 to inhibit the growth of NCI-H460 and NCI-H446 cells, which represented non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), respectively. Tumor sphere formation assay was carried out to evaluate the effects of As2O3 on stem cell-like subpopulations. The expression of stem cell biomarkers CD133 and stem cell transcription factors such as Sox2 and Oct4 were detected. Moreover, the effects of As2O3 on expression of Gli1 and its target genes were observed. We found that As2O3 inhibited the cell proliferation and reduced the colony formation ability. Importantly, As2O3 decreased the formation of tumor spheres. The expression of stem cell biomarker CD133 and stem cell transcription factors such as Sox2 and Oct4 were markedly reduced by As2O3 treatment. Furthermore, As2O3 decreased the expression of Gli1, N-myc and GAS1. Our results suggested that As2O3 is a promising agent to inhibit CSLCs in lung cancer. In addition, the mechanism of CSLCs inhibition might involve Gli1 down-regulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...